Сетевая архитектура VMware vSAN — нужен ли вам RDMA?

В предыдущей статье мы рассмотрели, что производительность vSAN зависит не только от физической пропускной способности сети, соединяющей хосты vSAN, но и от архитектуры самого решения. При использовании vSAN ESA более высокоскоростные сети в сочетании с эффективным сетевым дизайном позволяют рабочим нагрузкам в полной мере использовать возможности современного серверного оборудования. Стремясь обеспечить наилучшие сетевые условия для вашей среды vSAN, вы, возможно, задаётесь вопросом: можно ли ещё как-то улучшить производительность vSAN за счёт сети? В этом посте мы обсудим использование vSAN поверх RDMA и разберёмся, подойдёт ли это решение вам и вашей инфраструктуре.

Обзор vSAN поверх RDMA

vSAN использует IP-сети на базе Ethernet для обмена данными между хостами. Ethernet-кадры (уровень 2) представляют собой логический транспортный слой, обеспечивающий TCP-соединение между хостами и передачу соответствующих данных. Полезная нагрузка vSAN размещается внутри этих пакетов так же, как и другие типы данных. На протяжении многих лет TCP поверх Ethernet обеспечивал исключительно надёжный и стабильный способ сетевого взаимодействия для широкого спектра типов трафика. Его надёжность не имеет аналогов — он может функционировать даже в условиях крайне неудачного проектирования сети и плохой связности.

Однако такая гибкость и надёжность имеют свою цену. Дополнительные уровни логики, используемые для подтверждения получения пакетов, повторной передачи потерянных данных и обработки нестабильных соединений, создают дополнительную нагрузку на ресурсы и увеличивают вариативность доставки пакетов по сравнению с протоколами без потерь, такими как Fibre Channel. Это может снижать пропускную способность и увеличивать задержки — особенно в плохо спроектированных сетях. В правильно организованных средах это влияние, как правило, незначительно.

Чтобы компенсировать особенности TCP-сетей на базе Ethernet, можно использовать vSAN поверх RDMA через конвергентный Ethernet (в частности, RoCE v2). Эта технология всё ещё использует Ethernet, но избавляется от части избыточной сложности TCP, переносит сетевые операции с CPU на аппаратный уровень и обеспечивает прямой доступ к памяти для процессов. Более простая сетевая модель высвобождает ресурсы CPU для гостевых рабочих нагрузок и снижает задержку при передаче данных. В случае с vSAN это улучшает не только абсолютную производительность, но и стабильность этой производительности.

RDMA можно включить в кластере vSAN через интерфейс vSphere Client, активировав соответствующую опцию в настройках кластера. Это предполагает, что вы уже выполнили все предварительные действия, необходимые для подготовки сетевых адаптеров хостов и коммутаторов к работе с RDMA. Обратитесь к документации производителей ваших NIC и коммутаторов для получения информации о необходимых шагах по активации RDMA.

Если в конфигурации RDMA возникает хотя бы одна проблема — например, один из хостов кластера теряет возможность связи по RDMA — весь кластер автоматически переключается обратно на TCP поверх Ethernet.

Рекомендация. Рассматривайте использование RDMA только в случае, если вы используете vSAN ESA. Хотя поддержка vSAN поверх RDMA появилась ещё в vSAN 7 U2, наибольшую пользу эта технология приносит в сочетании с высокой производительностью архитектуры ESA, начиная с vSAN 8 и выше.

Как указано в статье «Проектирование сети vSAN», использование RDMA с vSAN влечёт за собой дополнительные требования, ограничения и особенности. К ним относятся:

  • ReadyNodes для vSAN должны использовать сетевые адаптеры, сертифицированные для RDMA.
  • Коммутаторы должны быть совместимы с RDMA и настроены соответствующим образом (включая такие параметры, как DCB — Data Center Bridging и PFC — Priority Flow Control).
  • Размер кластера не должен превышать 32 хоста.
  • Поддерживаются только следующие политики объединения интерфейсов:
    • Route based on originating virtual port
    • Route based on source MAC hash
      Использование LACP или IP Hash не поддерживается с RDMA.
  • Предпочтительно использовать отдельные порты сетевых адаптеров для RDMA, а не совмещать RDMA и TCP на одном uplink.
  • RDMA не совместим со следующими конфигурациями:
  • 2-узловые кластеры (2-Node)
  • Растянутые кластеры (stretched clusters)
  • Совместное использование хранилища vSAN
  • Кластеры хранения vSAN (vSAN storage clusters)
  • В VCF 5.2 использование vSAN поверх RDMA не поддерживается. Эта возможность не интегрирована в процессы SDDC Manager, и не предусмотрено никаких способов настройки RDMA для кластеров vSAN. Любые попытки настроить RDMA через vCenter в рамках VCF 5.2 также не поддерживаются.
  • Дополнительную информацию о настройке RDMA для vSAN можно найти в базе знаний KB 382163: Configuring RDMA for vSAN.

    Прирост производительности при использовании vSAN поверх RDMA

    При сравнении двух кластеров с одинаковым аппаратным обеспечением, vSAN с RDMA может показывать лучшую производительность по сравнению с vSAN, использующим TCP поверх Ethernet. В публикации Intel «Make the Move to 100GbE with RDMA on VMware vSAN with 4th Gen Intel Xeon Scalable Processors» были зафиксированы значительные улучшения производительности в зависимости от условий среды.

    Рекомендация: используйте RDTBench для тестирования соединений RDMA и TCP между хостами. Это также отличный инструмент для проверки конфигурации перед развёртыванием производительного кластера в продакшене.

    Fibre Channel — действительно ли это «золотой стандарт»?

    Fibre Channel заслуженно считается надёжным решением в глазах администраторов хранилищ. Протокол Fibre Channel изначально разрабатывался с одной целью — передача трафика хранения данных. Он использует «тонкий стек» (thin stack), специально созданный для обеспечения стабильной и низколатентной передачи данных. Детеминированная сеть на базе Fibre Channel работает как единый механизм, где все компоненты заранее определены и согласованы.

    Однако Fibre Channel и другие протоколы, рассчитанные на сети без потерь, тоже имеют свою цену — как в прямом, так и в переносном смысле. Это дорогая технология, и её внедрение часто «съедает» большую часть бюджета, уменьшая возможности инвестирования в другие сетевые направления. Кроме того, инфраструктуры на Fibre Channel менее гибкие по сравнению с Ethernet, особенно при необходимости поддержки разнообразных топологий.

    Хотя Fibre Channel изначально ориентирован на физическую передачу данных без потерь, сбои в сети могут привести к непредвиденным последствиям. В спецификации 32GFC был добавлен механизм FEC (Forward Error Correction) для борьбы с кратковременными сбоями, но по мере роста масштаба фабрики растёт и её сложность, что делает реализацию сети без потерь всё более трудной задачей.

    Преимущество Fibre Channel — не в абсолютной скорости, а в предсказуемости передачи данных от точки к точке. Как видно из сравнения, даже с учётом примерно 10% накладных расходов при передаче трафика vSAN через TCP поверх Ethernet, стандартный Ethernet легко может соответствовать или даже превосходить Fibre Channel по пропускной способности.

    Обратите внимание, что такие обозначения, как «32GFC» и Ethernet 25 GbE, являются коммерческими названиями, а не точным отражением фактической пропускной способности. Каждый стандарт использует завышенную скорость передачи на уровне символов (baud rate), чтобы компенсировать накладные расходы протокола. В случае с Ethernet фактическая пропускная способность зависит от типа передаваемого трафика. Стандарт 40 GbE не упоминается, так как с 2017 года он считается в значительной степени устаревшим.

    Тем временем Ethernet переживает новый виток развития благодаря инфраструктурам, ориентированным на AI, которым требуется высокая производительность без уязвимости традиционных «безубыточных» сетей. Ethernet изначально проектировался с учётом практических реалий дата-центров, где неизбежны изменения в условиях эксплуатации и отказы оборудования.

    Благодаря доступным ценам на оборудование 100 GbE и появлению 400 GbE (а также приближению 800 GbE) Ethernet становится чрезвычайно привлекательным решением. Даже традиционные поставщики систем хранения данных в последнее время отмечают, что всё больше клиентов, ранее серьёзно инвестировавших в Fibre Channel, теперь рассматривают Ethernet как основу своей следующей сетевой архитектуры хранения. Объявление Broadcom о выпуске чипа Tomahawk 6, обеспечивающего 102,4 Тбит/с внутри одного кристалла, — яркий индикатор того, что будущее высокопроизводительных сетей связано с Ethernet.

    С vSAN ESA большинство издержек TCP поверх Ethernet можно компенсировать за счёт грамотной архитектуры — без переподписки и с использованием сетевого оборудования, поддерживающего высокую пропускную способность. Это подтверждается в статье «vSAN ESA превосходит по производительности топовое хранилище у крупной финансовой компании», где vSAN ESA с TCP по Ethernet с лёгкостью обошёл по скорости систему хранения, использующую Fibre Channel.

    Насколько хорош TCP поверх Ethernet?

    Если у вас качественно спроектированная сеть с высокой пропускной способностью и без переподписки, то vSAN на TCP поверх Ethernet будет достаточно хорош для большинства сценариев и является наилучшей отправной точкой для развёртывания новых кластеров vSAN. Эта рекомендация особенно актуальна для клиентов, использующих vSAN в составе VMware Cloud Foundation 5.2, где на данный момент не поддерживается RDMA.

    Хотя RDMA может обеспечить более высокую производительность, его требования и ограничения могут не подойти для вашей среды. Тем не менее, можно добиться от vSAN такой производительности и стабильности, которая будет приближена к детерминированной модели Fibre Channel. Для этого нужно:

    • Грамотно спроектированная сеть. Хорошая архитектура Ethernet-сети обеспечит высокую пропускную способность и низкие задержки. Использование топологии spine-leaf без блокировки (non-blocking), которая обеспечивает линейную скорость передачи от хоста к хосту без переподписки, снижает потери пакетов и задержки. Также важно оптимально размещать хосты vSAN внутри кластера — это повышает сетевую эффективность и производительность.

    • Повышенная пропускная способность. Устаревшие коммутаторы должны быть выведены из эксплуатации — им больше нет места в современных ЦОДах. Использование сетевых адаптеров и коммутаторов с высокой пропускной способностью позволяет рабочим нагрузкам свободно передавать команды на чтение/запись и данные без узких мест. Ключ к стабильной передаче данных по Ethernet — исключить ситуации, при которых кадры или пакеты TCP нуждаются в повторной отправке из-за нехватки ресурсов или ненадёжных каналов.

    • Настройка NIC и коммутаторов. Сетевые адаптеры и коммутаторы часто имеют настройки по умолчанию, которые не оптимизированы для высокой производительности. Это может быть подходящим шагом, если вы хотите улучшить производительность без использования RDMA, и уже реализовали два предыдущих пункта. В документе «Рекомендации по производительности для VMware vSphere 8.0 U1» приведены примеры таких возможных настроек.

    Дополнительную информацию по проектированию сетей для vSAN можно найти в vSAN Network Design Guide. Для сред на базе VMware Cloud Foundation см. «Network Design for vSAN for VMware Cloud Foundation».

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *